荧光的发展
最早记载的叶绿素荧光现象是在19世纪时。是由欧洲传教士Brewster发现,他发现当强光穿过月桂叶子的乙醇提取液时,溶液的颜色由绿色变成了红色。而在1852年Stokes 认识到这是一种光发射现象,并创造了“fluorescence”一词。在1960年代到1980年代早期,叶绿素荧光技术被广泛用于光合作用基础研究,很多重要发现都与这一技术有关,如光合作用存在两个光反应,就是采用的这一技术的典型代表。但在那个年代,所有的叶绿素荧光测量都只能在*遮蔽环境光的“黑匣子”里进行,这大大限制了叶绿素荧光技术在植物胁迫生理学、生理生态学和植物病理学等领域的应用。因此在很长一段时间中,叶绿素荧光技术在基础研究和应用研究的使用中存在一个鸿沟。尽管如此,情况还是在逐步好转。这是因为虽然叶绿素荧光信号虽然复杂,但确实提供了可靠、定量的信息,并且测量仪器越来越小型化。
叶绿素荧光成像系统有哪些参数
叶绿素分子吸收光能(激发能)后,由基态跃迁到激发态,激发态是不稳定的状态,就会再回到基态,电子由基态回到基态的过程中,大部分能量转向反应中心推动光化学反应及后来的电子传递光合磷酸化,固定。还原CO2最终将能量贮存在有机物中,一小部分能量以热的形式耗散,再有一部分能量以荧光的形式发出。这三者之间是此消彼长相互竞争的关系。因此我们可以用叶绿素荧光来研究光合作用的变化。
光合作用机理
光合作用的是能量及物质的转化过程,首先由叶绿素将光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。
光反应:吸收光能,合成一些如ATP、NADPH等高能物质,用以维持细胞生长;
暗反应:利用ATP、NADPH固定二氧化碳,生成一些列碳水化合物 叶绿素荧光动力学包含着光合作用过程的重要信息,如光能的吸收和转化。能量的传递与分配、反应中心的状态,过剩能量的耗散以及反映光合作用的光抑制和光破坏。应用叶绿素荧光可以对植物材料进行原位、无损伤的检测,且操作步骤简单。所以叶绿素荧光越来越受到人们的青睐,在光合生理和逆境生理等研究领域有着广泛的应用。
叶绿素荧光成像系统有哪些参数
测量:利用PSII来测量光合效率
手持式操作:应用枪托式,单拇指操作与激发测量等
光源重量:光源利用坚固耐用塑料设计的,可以野外应用
用户界面:设置测量界面、下载数据容易方便
应用饱和闪光与蓝色激发光进行PSII的测量
利用余弦校正传感器测量光量子强度(PAR)
拇指灵活操作能够快速进行叶片的固定与分离
可选叶片温度传感器
手持式读表能够存储数据
Meter——检测并调整测量光闪的强度
OJIP曲线—— Kautsky Effect的快速上升部分
暗适应下PSII的最大量子产额的最大量子产额[Fv/Fm=(Fm-Fo )/ Fm]
光适应下PSII的最大量子产额的最大量子产额[Fv'/Fm'=(Fm'-Fo')/ Fm']
光适应下的PSII反应中心开放的比例[qp=(Fm'-Fs)/(Fo'-Fm')]
光适应下PSII的实际光化学效率[φPSII=(Fm'- Fs)/Fm']
光适应下的非光化学猝灭(NPQ=Fm/Fm'-1)
叶绿素荧光成像系统特点
全自动开合叶室,程序控制叶室闭合进行暗适应测量
测量ΦII, FV/FM, PAR和温度
快门实现叶绿素荧光诱导曲线、NPQ弛豫和RLC(快速光曲线),无人值守自动监测
自动增益和自动归零功能:自动在野外进行正确设置
数据采集器可同时操作多个传感器
简单开关启动水下或陆地测量程序
全防水可达50m
潜水坚固不锈钢或工程塑料设计
扩展大型外壳与电池包
利用易用软件选择所供程序或设定程序
根据程序,可自动运行达72h
开合型传感器可通过电脑控制,用于预田间实验
增加数采可以扩展到多个传感器(同时测量可达15个)
叶绿素荧光成像系统测量参数
Fo,Fm,Fv/Fm,F,Fm’,Fo’(direct),ΔF/Fm’,qP,qL,qN,NPQ,Y(NO),Y(NPQ),rETR,PAR,T等。