网站首页技术中心 > 利用VideometerLab 4多光谱成像系统进行藜麦霜霉病研究

利用VideometerLab 4多光谱成像系统进行藜麦霜霉病研究

更新时间:2021-06-28 点击量:1351

介绍

藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。

利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 

1.目标

开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。

严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。

孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 

image.png

图1 叶片正面严重度症状

image.png

图2 叶片正面孢子形成

2.多光谱图像分析

研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 µm。每个图像层的分辨率为2192X2192像素。

图像分析严重度模型

从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 

图像分析孢子形成

在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。

另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。

image.pngimage.png

image.png

4(A) sRGB图像。(B)490nm(蓝光)(C)570nm(黄色)(D) 转换,(E)(F)2种类型定量分割。

image.png

 

5(A) sRGB 图像,(B)490nm(蓝光)(C) 570nm(黄色)(D)转换,(E)定量分割。

 

结果

image.png

图6:133个基因型的平均严重程度(%)分布

image.png 

表1手工以及基于多光谱表型成像的藜麦霜霉病互作

研究对相关的132个藜麦基因型对霜霉病的表型反应进行了研究。设置了3个实验,每个有4个区块,配有复制控制样品以及非复制基因型样品。找到了对P. variablilis 反应变异大的藜麦基因型,发现了基因型对互作有着显著影响 (p-value = 1.18 x 10-18) 图6。研究人员对图像表型研究结果进行了比较,研究人员正在开发适合覆盖整个反应的算法。该综述中,研究者展示了与G9基因型相对应的叶片图像。结果总结在表1中,来不同区块和试验的分属不同植株的10片叶子取了平均值。

结论

多光谱成像如严格按照规程使用、记录完善的话,是非常强劲的表型工具。对图像定量基于算法应用,这需融合对疾病反应的经验和知识。对孢子形成,菌丝萌发,渗透,侵染面积以及健康组织识别可提供更加近似的像素标识。

目前研究人员已经开发出了可应用于藜麦霜霉病互作的应用于损伤组织算法。

Baidu
map